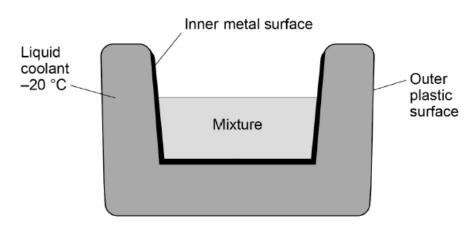
<u>AQA - Internal energy and energy transfer – GCSE Combined Science Physics</u>

	Der_1F/NO.4(4.5_4.8)				
0 4 . 5	0 4 . 5 The air in the balloon had a mass of 0.00320 kg				
	The temperature of the air in the balloon decreased by 215 °C				
	The change in thermal energy of the air in the balloon was 860 J				
	Calculate the specific heat capacity of the air in the balloon.				
	Use the Physics Equations Sheet.	[3 marks]			
		io marrio			
	Specific heat capacity =	J/kg°C			
0 4 . 6	The liquid nitrogen boiled.				
	What happens to the temperature of nitrogen as it boils?				
	Tick (✓) one box.	[1 mark]			
	TICK (*) OHE BOX.				
	Temperature decreases				
	Tananavatura inaraasa				
	Temperature increases				
	Temperature stays the same				

The scientist recorded measurements to calculate the specific latent heat of vaporisation of nitrogen.

0 4 . 7	What is meant by vaporisation?		[1 mark]
	Tick (✓) one box.		[1 mark]
	A change of state from liquid to gas		
	A change of state from solid to gas		
	A change of state from solid to liquid		
0 4 . 8	The mass of nitrogen that vaporised wa	as 0.0072 kg	
	1440 J of energy was transferred to the	e nitrogen as it vaporised.	
	Calculate the specific latent heat of var	porisation of nitrogen.	
	Use the Physics Equations Sheet.		[3 marks]
	Specific latent heat of va	porisation =	J/kg

2. May/2020/Paper_1H/No.5(5.3_5.5)


Figure 6 shows a bowl used for making ice cream.

The walls of the bowl contain a liquid coolant.

The bowl is cooled to -20 °C before the mixture is put in the bowl.

The bowl causes the mixture to cool down and freeze.

Figure 6

0 5.3 Explain why the different thermal conductivities of metal and plastic are important in the design of the bowl.

			•

Metal			
Plastic			

0 5 . 4	The liquid coolant has a freezing point below –20 °C
	Explain one other property that the liquid coolant should have. [2 marks]
0 5 . 5	The initial temperature of the mixture was +20 $^{\circ}\text{C}.$ The mixture froze at –1.5 $^{\circ}\text{C}.$
	A total of 165 kJ of internal energy was transferred from the mixture to cool and freeze it.
	specific heat capacity of the mixture = 3500 J/kg °C
	specific latent heat of fusion of the mixture = 255 000 J/kg
	Calculate the mass of the mixture.
	Give your answer to 2 significant figures.
	[6 marks]
	Mass (2 significant figures) = kg

3.	May/2019/Pap	per_1F/No.7	
	0 7	A scientist cooled the air inside a container.	
	0 7.1	The temperature of the air changed from 20 $^{\circ}\text{C}$ to 0 $^{\circ}\text{C}$	
		The volume of the container of air stayed the same.	
		Explain how the motion of the air molecules caused the pressure in the cont	ainer to
		change as the temperature decreased.	[3 marks]
	0 7.2	The air contained water that froze at 0 °C	
		The change in internal energy of the water as it froze was 0.70 kJ	
		The specific latent heat of fusion of water is 330 kJ/kg	
		Calculate the mass of ice produced.	
		Use the Physics Equations Sheet.	[3 marks]
			[o marks]
		Mass of ice =	kg
		111000 01 100	

0 7.3	The air also contained oxygen, nitrogen and carbon dioxide.
	Oxygen boils at -183 °C and freezes at -218 °C Nitrogen boils at -195 °C and freezes at -210 °C

Carbon dioxide sublimates at -78 °C

The scientist continued to cool the air to a temperature of -190 °C

What is the state of each substance at -190 °C?

[2 marks]

Tick (\checkmark) one box for each row of the table.

Substance	Solid	Liquid	Gas
Oxygen			
Nitrogen			
Carbon dioxide			

The air also contained a small amount of argon.

as the temperature of the air decreased.	

May/2019/Pap	per_1H/No.2(2.1_2.3)	
0 2	A scientist cooled the air inside a container.	
0 2.1	The temperature of the air changed from 20 $^{\circ}\text{C}$ to 0 $^{\circ}\text{C}$	
	The volume of the container of air stayed the same.	
	Explain how the motion of the air molecules caused the pressure in the container	r to
	change as the temperature decreased. [3 m	narks]
0 2 . 2	The air contained water that froze at 0 °C	
	The change in internal energy of the water as it froze was 0.70 kJ	
	The specific latent heat of fusion of water is 330 kJ/kg	
	Calculate the mass of ice produced.	
	Use the Physics Equations Sheet.	arke1
	[SII	narks]
	Mass of ice =	kg

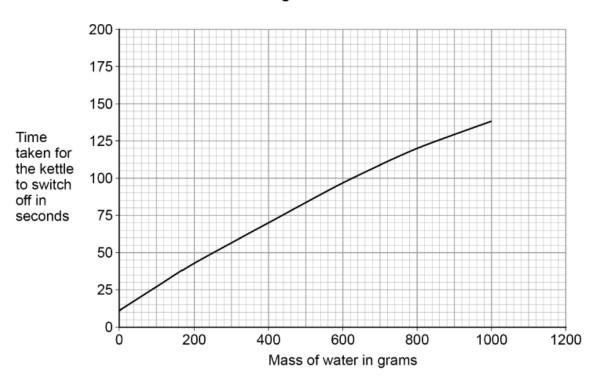
0 2 . 3	The air also contained oxygen, nitrogen and carbon dioxide.
	Oxygen boils at -183 °C and freezes at -218 °C

Oxygen boils at -183 °C and freezes at -218 °C Nitrogen boils at -195 °C and freezes at -210 °C Carbon dioxide sublimates at -78 °C

The scientist continued to cool the air to a temperature of -190 °C

What is the state of each substance at -190 °C?

[2 marks]


Tick (\checkmark) one box for each row of the table.

Substance	Solid	Liquid	Gas
Oxygen			
Nitrogen			
Carbon dioxide			

5. May/2019/Paper_1H/No.5(5.3_5.5)

Figure 5 shows how the mass of water in the kettle affected the time taken for the kettle to switch off.

Figure 5

0 5 . 3 Suggest why the line on **Figure 5** does **not** go through the origin.

[1 mark]

0 5 . 4 Suggest why the results give a non-linear pattern.

[1 mark]

0 5 . 5	The power of the kettle was 2.6 kW	
	The kettle took 120 seconds to heat 0.80 kg of water from 18 $^{\circ}\text{C}$ to 100 $^{\circ}\text{C}$	
	Calculate the specific heat capacity of water using this information.	
	Give your answer to 2 significant figures.	[6 marks]
	Specific heat capacity =	l/kg °C