<u>AQA - Forces - GCSE Combined Science Physics</u> 1. June/2020/Paper 2F/No.1(1.2),(1.4) | 0 1.2 | Why does the velocity of the ball decrease as velocity of the ball decrease as the velocity of ve | he ball travels along the lane? | ?
[1 mark] | |-------|--|---------------------------------|---------------| | | Tick (✓) one box. The force of gravity slows the ball down. | | | | | There are no forces acting on the ball. | | | | | There is a resultant force acting on the ball. | | | Figure 2 shows the ball hitting one of the pins. Figure 2 0 1. 4 Draw an arrow on Figure 2 to show the force of the pin on the ball. [2 marks] | 2. | June/2020/Paper_2F/No.4(4.2) | | |----|---|----------| | | 0 4. 2 Which force acting on the moving bicycle is a non-contact force? | [1 mark] | | | Tick (✓) one box. | [1 mark] | | | Air resistance | | | | Friction | | | | Gravitational force | | | | Normal contact force | | - **3.** June/2020/Paper_2H/No.4(4.1) - 0 4 Figure 8 shows a girl bowling a ball along a ten-pin bowling lane. Figure 8 The girl is trying to knock down the ten pins at the end of the bowling lane. O 4.1 Velocity is a vector quantity, speed is a scalar quantity. Describe what is meant by a vector quantity and a scalar quantity. [2 marks] Vector quantity Scalar quantity | June/2019/Pap | per_2F/No.1(1.1) | | | |---------------|---|------------------|-----------| | 0 1 | Magnetic force is a no | n-contact force. | | | 0 1.1 | Which two of these are also non-contact forces? | | | | | Tick (\checkmark) two boxes. | | [2 marks] | | | Air resistance | | | | | Electrostatic | | | | | Friction | | | | | Gravitational | | | | | Tension | | | . | June/2019/Pa | per_2H/No.3(3.1-3.2) | | | |--------------|---|---|-----------| | 0 3 | Some quantities are scalars and some are vectors. | | | | 0 3.1 | Which of the following quantities are scalars? | | [2 marks] | | | Tick (\checkmark) two boxes. | | - | | | Displacement | | | | | Distance | | | | | Force | | | | | Speed | | | | | Velocity | | | | 0 3.2 | Give the difference be | etween a vector quantity and a scalar quantity. | [1 mark] | | | | | | ## **6.** June/2019/Paper_2H/No.6 0 6 **Figure 9** shows a free body diagram for an aeroplane flying at a constant speed and at a constant height. The speed of the aeroplane is much greater than the speed at which the aeroplane lands. Figure 9 | 1 | Explain how the forces need to change so the aeroplane can land. | [4 marks] | |---|--|-----------| 0 6 . 2 | The aeroplane lands at a speed of 80 m/s | | |---------|--|-----------| | | After landing, the aeroplane takes 28 s to decelerate to a speed of 10 m/s | | | | The mean resultant force on the aeroplane as it decelerates is 750 000 N | | | | Calculate the mass of the aeroplane. | | | | | [5 marks] | Macs = | ka |