AQA - Exothermic and endothermic reactions – GCSE Chemistry

1.	May/2020/Paper_8462/1F/No.1.2 What temperature does chlorine gas condense at to form a liquid?	
	Use Table 1 .	[1 mark]
	Temperature = °C	
2.	May/2020/Paper_8462/1F/No.3 This question is about chemical reactions and energy.	
	Hydrogen reacts with oxygen to produce water.	
	This reaction releases energy.	
	Complete the word equation for the reaction.	[1 mark]
	hydrogen + oxygen →	

Figure 3 shows a reaction profile for the reaction between hydrogen and oxygen.

What do the labels W, X, Y and Z represent?

Choose answers from the box.

[4 marks]

activation energy	energy	overall energy change	
products	progress of reaction	reactants	
	•		
w			

Y

Z

1 mark
i illai k
the
marks

3. May/2020/Paper_8462/1F/No.6.4

How do the results in **Table 4** show that the reaction is endothermic?

[1 mark]

4. May/2020/Paper_8462/1F/No.6.5

Three of the student's results are plotted on Figure 9.

A line of best fit for these points is drawn.

Complete Figure 9.

You should:

- plot the data from Table 4 on Figure 9
- · draw a line of best fit through the points you have plotted
- extend your line of best fit to meet the line of best fit already drawn on Figure 9.

[4 marks]

Figure 9

5.	May/2020/Paper_8462/1F/No.7.4 Describe how the pH of the mixture changes as sodium hydroxide solution is added to hydrochloric acid.
	Use data from Figure 10 in your answer. [3 marks]
6.	May/2020/Paper_8462/1F/No.7.5 What volume of sodium hydroxide solution is needed to neutralise 25.0 cm³ of hydrochloric acid?
	Use Figure 10. [1 mark
	Volume = cm ³

7. May/2020/Paper_8462/1H/No.7

The reaction between hydrogen and oxygen releases energy.

A student drew a reaction profile for the reaction between hydrogen and oxygen.

Figure 3 shows the student's reaction profile.

Figure 3

The student made two errors when drawing the reaction profile.

Describe the two errors.

[2 marks]

2

The reaction between hydrogen and oxygen in a hydrogen fuel cell is used to produce electricity.	
Hydrogen fuel cells and rechargeable cells are used to power some cars.	
Give two advantages of using hydrogen fuel cells instead of using rechargeable cells to power cars.	[2 marks
1	
2	

Reactions occur at the positive electrode and at the negative electrode in a hydrogen fuel cell.

[1 mark]

Write a half equation for one of these reactions.

The three states of matter can be represented by a simple particle model.

Figure 4 shows a simple particle model for hydrogen gas.

Figure 4

Give two limitations of this simple particle model for hydrogen gas.

[2 marks]

1_____

2_____

The hydrogen gas needed to power a car for 400 km would occupy a large volume.

Suggest one way that this volume can be reduced.

[1 mark]

The energy needed for a car powered by a hydrogen fuel cell to travel 100 km is 58 megajoules (MJ).

The energy released when 1 mole of hydrogen gas reacts with oxygen is 290 kJ

The volume of 1 mole of a gas at room temperature and pressure is 24 dm³

Calculate the volume of hydrogen gas at room temperature and pressure the car to travel 100 km	needed for
the car to traver 100 km	[4 marks
Volume of hydrogen gas =	dm³

8. May/2020/Paper_8462/1H/No.9

This question is about citric acid (C₆H₈O₇).

Citric acid is a solid.

A student investigated the temperature change during the reaction between citric acid and sodium hydrogencarbonate solution.

This is the method used.

- 1. Pour 25 cm³ of sodium hydrogencarbonate solution into a polystyrene cup.
- 2. Measure the temperature of the sodium hydrogencarbonate solution.
- 3. Add 0.20 g of citric acid to the polystyrene cup.
- 4. Stir the solution.
- 5. Measure the temperature of the solution.
- 6. Repeat steps 3 to 5 until a total of 2.00 g of citric acid has been added.

The student plotted the results on a graph.

Figure 6 shows the student's graph.

Figure 6

Figure 6 shows an anomalous point when 0.60 g of citric acid was added. This was caused by the student making an error.

The student correctly:

- · measured the mass of the citric acid
- · read the thermometer
- plotted the point.

Suggest one reason for the anomalous point.

[1 mark]

Explain the shape of the graph in terms of the energy transfers taking place.
You should use data from Figure 6 in your answer. [3 marks
A second student repeated the investigation using a metal container instead of the polystyrene cup. The container and the cup were the same size and shape.
Sketch a line on Figure 6 to show the second student's results until 1.00 g of citric acid had been added. The starting temperature of the solution was the same.
Explain your answer. [3 marks

The student used a so	lution of citric acid	to determine the	concentration	of a solution
of sodium hydroxide b	y titration.			

The student made 250 cm³ of a solution of citric acid of concentration 0.050	00 mol/dm ³
Calculate the mass of citric acid ($C_6H_8O_7$) required.	
Relative atomic masses (A_r): H = 1 C = 12 O = 16	[3 marks]
Mass =	g
This is part of the method the student used for the titration.	
1. Measure 25.0 cm³ of the sodium hydroxide solution into a conical flask using a pipette.	
2. Add a few drops of indicator to the flask.	
3. Fill a burette with citric acid solution.	
Describe how the student would complete the titration.	[3 marks]

Give two reasons why a burette is used for the citric acid solution.	
1	
2	
13.3 cm³ of 0.0500 mol/dm³ citric acid solution was needed to neutralise 25.0 cm³ of sodium hydroxide solution.	
The equation for the reaction is:	
$3NaOH + C_6H_8O_7 \rightarrow C_6H_5O_7Na_3 + 3H_2O$	
Calculate the concentration of the sodium hydroxide solution in mol/dm ³	[3 marks]
Concentration =	mol/dm³

9. May/2019/Paper_8462/1F/No.2.3-2.6

Hydrogen peroxide decomposes in the presence of a catalyst.

Which elements are often used as catalysts?

[1 mark]

Figure 3 shows the reaction profile for the decomposition of hydrogen peroxide.

The word equation for this reaction is:

hydrogen peroxide → water + oxygen

Labels A, B, C and D each represent a dr	пегепт рагт от the rea	action profile.
Use Figure 3 to answer Questions 02.4 a	nd 02.5	
Which label shows the activation energy?		[1 mark]
Tick (✓) one box.		
A B	С	D
Which label shows the energy of hydroge	n peroxide?	
Tick (✓) one box.		[1 mark]
A B	С	D
The decomposition of hydrogen peroxide	gives out energy to t	he surroundings.
What type of reaction is this?		
Tick (✓) one box.		[1 mark]

Displacement

Endothermic

Exothermic

Neutralisation

10. May/2019/Paper_8462/1F/No.5

A student investigated the reaction between lumps of calcium carbonate and dilute hydrochloric acid.

This is the method used.

- 1. Pour 100 cm³ of dilute hydrochloric acid into a conical flask.
- 2. Place the conical flask on a balance.
- 3. Add 2 g of calcium carbonate lumps to the conical flask.
- 4. Wait until the calcium carbonate stops reacting.
- 5. Record the decrease in mass of the conical flask and contents.
- 6. Repeat steps 1 to 5 three more times.

The equation for the reaction is:

$$CaCO_3(\boldsymbol{X}) \ + \ 2 \, HCl(aq) \ \rightarrow \ CaCl_2(aq) \ + \ CO_2(g) \ + \ H_2O(l)$$

What is the state symbol **X** in the equation?

[1 mark]

Tick (\checkmark) one box.

Table 2 shows the student's results.

Table 2

	Result	Result	Result	Result
	1	2	3	4
Decrease in mass of the conical flask and contents in g	0.84	0.79	0.86	0.47

What is the range of the four results in Table 2 ?	mark1
	mark]
From g to	_ g
	_ 3
Calculate the mean decrease in mass of the conical flask and contents.	
Do not include the anomalous result.	
Use Table 2 .	
	narks]

A teacher demonstrated the investigation.

The teacher used different masses of calcium carbonate.

Figure 8 shows the teacher's results.

Figure 8

What type of variable is the mass of calcium carbonate?

[1 mark]

Tick (\checkmark) one box.

Control

Dependent

Independent

Use Figure 8 to answer Questions 05.6 and 05.7

Complete the sentence. [1 mark
As the mass of calcium carbonate used increases, the decrease in mass of
the conical flask and contents
What is the decrease in mass of the conical flask and contents when a 3 g sample of calcium carbonate is used? [1 mark]
Decrease in mass =

1	1.	May/2019/Paper_	8462/1F/No.6
			/ /

This question is about the extraction of metals.

Tungsten is a metal.

The symbol of tungsten is W

Tungsten is produced from tungsten oxide by reaction with hydrogen.

The equation for the reaction is:

$$WO_3 + 3H_2 \rightarrow W + 3H_2O$$

Calculate the percentage atom economy when tungsten is produced in this reaction.

Use the equation:

percentage atom economy =
$$\frac{184}{(M_r \text{ WO}_3) + (3 \times M_r \text{ H}_2)} \times 100$$

Relative formula masses (M _r).	VVO ₃ = 232	п ₂ = 2	[2 marks]

Percentage atom economy = ______ %

Aluminium is extracted from aluminium oxide.

38% of a rock sample is alumin	ium oxide.		
Calculate the mass of aluminium	[2 marks]		
	Mass of alu	minium oxide =	kg
The formula of aluminium oxide	e is Al ₂ O ₃		
Calculate the relative formula n	nass $(M_{\rm r})$ of alu	ıminium oxide.	
Relative atomic masses (A _r):	O = 16	Al = 27	[2 marks]
	Relative formu	ula mass (<i>M</i> _r) =	

60.0 kg of aluminium oxide produces a maximum of 31.8 kg of aluminium.
In an extraction process only 28.4 kg of aluminium is produced from 60.0 kg of aluminium oxide.
Calculate the percentage yield.
Give your answer to 3 significant figures.
Use the equation:
percentage yield = $\frac{\text{mass of product actually made}}{\text{maximum theoretical mass of product}} \times 100$ [3 marks]
Percentage yield = %
Extracting metals by electrolysis is a very expensive process.
Explain why aluminium is extracted using electrolysis and not by reduction with carbon.
[2 marks]

12. May/2019/Paper_8462/1F/No.7.6

	The intercept on the y-axis of Figure 10 shows the starting temperature of potassium hydroxide solution.	f the
	Give the starting temperature of the potassium hydroxide solution.	[1 mark]
	Starting temperature =	°C
13.	May/2019/Paper_8462/1H/No.5.5-5.7 Calculate the overall energy change for the reaction.	
	Use Figure 7 and Table 3.	[3 marks]
	Overall energy change =	kJ
	Explain why the reaction between ammonia and oxygen is exothermic.	
	Use values from your calculation in Question 05.5	[2 marks]

Figure 8 shows the reaction profile for the reaction between ammonia and oxygen.

Complete Figure 8 by labelling the:

- · activation energy
- overall energy change.

[2 marks]

A student investigated the temperature change in the reaction between dilute sulfuric acid and potassium hydroxide solution.

This is the method used.

1. Measure 25.0 cm³ potassium hydroxide solution into a polystyrene cup.

2. Record the temperature of the solution.

3. Add 2.0 cm³ dilute sulfuric acid.

4. Stir the solution.

5. Record the temperature of the solution.

6. Repeat steps 3 to 5 until a total of 20.0 cm³ dilute sulfuric acid has been added.

Suggest why the student used a polystyrene cup rather than a glass beaker for the reaction.

[2 marks]

Table 6 shows some of the student's results.

Table 6

Volume of dilute sulfuric acid added in cm ³	Temperature in °C
0.0	18.9
2.0	21.7
4.0	23.6
6.0	25.0
8.0	26.1
10.0	27.1

Figure 11 shows some of the data from the investigation.

Figure 11

Complete Figure 11:

- plot the data from Table 6
- draw a line of best fit through these points
- extend the lines of best fit until they cross.

[4 marks]

Determine the volume of dilute sulfuric acid needed to react completely with 25.0 cm³ of the potassium hydroxide solution.

Use Figure 11 .	[1 mark]
Volume of dilute sulfuric acid to react completely =	cm ³
Determine the overall temperature change when the reaction is complete.	
Use Figure 11 .	[1 mark]
Overall temperature change =	°C

The student repeated the investigation.

The student used solutions that had different concentrations from the first investigation.

The student found that 15.5 cm³ of 0.500 mol/dm³ dilute sulfuric acid completely reacted with 25.0 cm³ of potassium hydroxide solution.

The equation for the reaction is:

$$2KOH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O$$

Calculate the concentration of the potassium hydroxide solution in \mbox{mol}/\mbox{dm}^3 and in $\mbox{g/dm}^3$

Relative atomic masses (A_r): H = 1	O = 16	K = 39	[6 marks]
Concentration	in mol/dm³ =	=	mol/dm ³
Concentratio			a/dm³