AQA - Exothermic and endothermic reactions - GCSE Combined Science Chemistry

1. May/2020/Paper 8464/1F/No.2

A student investigated the temperature change when metal ${\bf X}$ was added to copper sulfate solution.

This is the method used.

- 1. Add 25 cm³ of copper sulfate solution to a beaker.
- 2. Measure the temperature of the copper sulfate solution.
- 3. Add 1.0 g of metal X and stir.
- 4. Measure the highest temperature reached when metal **X** is added to copper sulfate solution.
- 5. Repeat steps 1 to 4 with different metals.

Figure 1 shows the apparatus used.

Figure 2 shows the thermometer reading of the copper sulfate solution at the start of the investigation.

Figure 2

The highest temperature reached when metal ${\bf X}$ was added to copper sulfate solution was 35.5 °C

Determine the temperature change when metal **X** is added to copper sulfate solution.

Use Figure 2.

[2 marks]

Highest temperature = 35.5 °C

Temperature at start = °C

Temperature change = °C

Give two variables the student should keep the same in this investigation.

[2 marks]

1_____

2 _____

The student repeated the experiment with metal Y.

Table 1 shows four results for metal Y.

Table 1

	Test 1	Test 2	Test 3	Test 4
Temperature change in °C	9.2	7.3	9.5	9.2

Calculate the mean temperature change for metal Y.

Do **not** include the anomalous result in your calculation.

[2 marks]

The more reactive the metal added to copper sulfate solution, the greater the temperature change.

Figure 3 shows a reactivity series.

The student repeated the experiment.

The student added:

- · magnesium to copper sulfate solution
- an unknown metal A to copper sulfate solution.

Table 2 shows the results.

Table 2

Metal	Temperature change in °C	
Magnesium	12	
Metal A	8	

The student concludes metal A is zinc.

Give one reason why the student is correct.

Use Figure 3 and Table 2.

[1 mark]

The student did the	experiment with silver and copper sulfate solution.	
What happens to th	e temperature of the mixture?	
Use Figure 3 .		[4
Tick (✓) one box.		[1 mark]
Decreases		
Increases		
Stays the same		
Suggest one reaso copper sulfate solut	n why the student should not add potassium metal to ion.	[1 mark]
100 cm ³ of the copp	per sulfate solution contains 1.8 g of copper sulfate.	
Calculate the mass	of copper sulfate in 25 cm³ of this copper sulfate solution	ղ. [2 marks]
	Mass =	g

2. May/2020/Paper_8464/1F/No.8

Some students investigated the thermal decomposition of metal carbonates.

The word equation for the reaction is:

metal carbonate → metal oxide + carbon dioxide

The students made the following hypothesis:

'When heated the same mass of any metal carbonate produces the same mass of carbon dioxide.'

The students heated a test tube containing copper carbonate.

Table 4 shows their results.

Table 4

Time the test tube containing copper carbonate was heated in mins	0	2	4	6
Mass of test tube and contents in g	17.7	17.1	17.0	17.0

Plan a method the students could use to test their hypothesis.

You should show how the students use their results to test the hypothesis.

You do not need to write about safety precautions.	[6 marks]

3. May/2020/Paper_8464/1H/No.5

A student investigated the temperature change when magnesium was added to copper sulfate solution.

This is the method used.

- 1. Pour 30 cm³ of copper sulfate solution into a polystyrene cup.
- 2. Measure the temperature of copper sulfate solution every minute for 3 minutes.
- 3. Add magnesium on the fourth minute.
- 4. Measure the temperature of the mixture at 5 minutes and then every minute up to 14 minutes.

[1 mark]

The student used the results to plot a graph.

Figure 4 shows the graph.

Figure 4

Suggest why the copper sulfate solution was left for four minutes before adding the magnesium.	
	[1 mark]
Complete Figure 4 by:	
 drawing a line of best fit through all the points after 7 minutes 	
extending the line back to 4 minutes.	[2 marks]
	[2 marko]
The temperature change for the reaction is the temperature difference bet two graph lines at 4 minutes.	ween the
Determine the temperature change for the reaction.	
Use Figure 4.	[2 marks]
	[2 marks]
Temperature change =	°C
•	
Explain why the temperature of the mixture decreases after 7 minutes.	[2 marks]

The student repeated the experiment with an unknown metal Q instead of magnesium.	
All the other variables were kept the same.	
The student recorded a smaller temperature change.	
Suggest the identity of metal Q .	
Give one reason for your answer.	[2 marks]
Metal Q	
Reason	
A copper sulfate solution contained 0.100 moles of copper sulfate dissolved in 0.500 dm³ of water.	
Calculate the mass of copper sulfate in 30.0 cm³ of this solution.	
Relative formula mass (M_r): CuSO ₄ = 159.5	
	[4 marks]
Mass =	g

4. Jun/2019/Paper_8464/1F/No.1.1-1.6

Which of these items uses an endothermic reaction?

[1 mark]

Tick (✓) one box.

Hand warmer

Sports injury pack

Self-heating can

Figure 1 shows the reaction profile for an exothermic reaction.

'	ation energy for the reactio	
Tick (✓) one box.		[1 mark]
AB	C D	
Which letter represents the over Tick (✓) one box.	rall energy change for the re	eaction? [1 mark]
AB	C D	
Complete the sentence.		
Choose the answer from the box	X.	
Choose the answer from the box	X	[1 mark]
Choose the answer from the box	the same as	[1 mark] higher than
	the same as	higher than
lower than In an exothermic reaction the en	the same as hergy of the products the energy of the	higher than
In an exothermic reaction the enis	the same as hergy of the products the energy of the energy of the atture at the start and at the	higher than

Figure 2 shows the temperature at the end of the reaction.

Figure 2

Complete Table 1.

Use Figure 2.

[2 marks]

Table 1

Temperature at start in °C	14.3
Temperature at end in °C	
Change in temperature in °C	

5. Jun/2019/Paper_8464/1H/No.3.1

Hydrogen reacts with oxygen.

$$2 H_2 (g) + O_2 (g) \rightarrow 2 H_2 O (g)$$

Figure 2 shows the relative energies of the reactants and products at a certain temperature.

Figure 2

Label the activation energy on Figure 2.

[1 mark]

6.	Jun/2	2019/F	Paper	8464/	/1H,	/No.3.2
----	-------	--------	-------	-------	------	---------

Determine the overall energy change for the reaction between hydrogen and oxygen shown in Question **03.1**

Use Figure 2.		[2 marks
	Energy change =	kJ

7. Jun/2019/Paper_8464/1H/No.3.4

The equation shows the decomposition of hydrogen peroxide.

$$2 \text{ H-O-O-H} \rightarrow 2 \text{ H-O-H} + \text{ O=O}$$

Table 1 shows the bond energies.

Table 1

Bond	0-0	0=0	O-H
Bond dissociation energy in kJ per mole	138	496	463

Calculate the overall energy change for the reaction.	[3 marks
Energy change =	kJ