AQA - Electrolysis - GCSE Combined Science Chemistry

1. May/2020/Paper_8464/1F/No.3.1-3.3

In the alpha particle scattering experiment alpha particles are fired at gold foil.

Alpha particles are positively charged.

Figure 4 shows the results.

Some alpha particles are deflected.

Complete the sentence.

Choose the answer from the box.

[1 mark]

negatively charged not charged	positively charged
--------------------------------	--------------------

Some alpha particles are deflected because

the nucleus of the atom is _____

solvedpapers.co.uk

Why are most alpha particles not deflected? Tick (✓) one box.	[1 mark]
TICK (*) OHE DOX.	
The atom is a tiny sphere that cannot be divided.	
The atom is mainly empty space.	
The electrons orbit the nucleus at specific distances.	
What was one conclusion from the alpha particle scattering experiment?	[1 mark]
Tick (✓) one box.	[many
The mass is concentrated at the centre of the atom.	
The mass is concentrated at the edge of the atom.	
The mass is spread evenly throughout the atom.	

2.

May/2020/Paper_8464/1F/No.6.1-6.4

Aluminium is produced by the reduction of aluminium oxide (Al ₂ O ₃).	
What is meant by the term reduction?	[1 mark]
Oxygen is formed at the positive carbon electrodes.	
Explain why the positive carbon electrodes must be continually replaced.	[3 marks]
A substance conducts electricity because of free moving, charged particles	
What are the free moving, charged particles in a:	
carbon electrode (made from graphite)	
molten mixture of aluminium oxide and cryolite	
metal wire?	[3 marks]
Carbon electrode (made from graphite)	
Molten mixture of aluminium oxide and cryolite	
Metal wire	

3.

May/2020/Paper_8464/1H/No.1.2-1.4

Aluminium is produced by the reduction of aluminium oxide (Al ₂ O ₃).	
What is meant by the term reduction?	[1 mark
Oxygen is formed at the positive carbon electrodes.	
Explain why the positive carbon electrodes must be continually replaced.	[3 marks]
A substance conducts electricity because of free moving, charged particles	
What are the free moving, charged particles in a:	
carbon electrode (made from graphite)	
molten mixture of aluminium oxide and cryolite	
metal wire?	[3 marks]
Carbon electrode (made from graphite)	
Molten mixture of aluminium oxide and cryolite	
Metal wire	

solvedpapers.co.uk

4.	Jun/2019/Paper_8464/1F/No.2.4 Molten copper chloride can be electrolysed.			
	State the product at each electrode when molten copper chloride is electrolysed. [2 marks]			
	Negative electrode			
	Positive electrode			

5. Jun/2019/Paper_8464/1F/No.2.5

A solution of copper chloride is electrolysed.

Figure 3 shows a graph of the increase in mass of the negative electrode.

This increase is shown over a time of 10 minutes.

Figure 3

Use the equation:

6.

$$Gradient = \frac{increase in mass in mg}{increase in time in minutes}$$

					[3 marks
Increase in m	ass				
Increase in tin	ne				
		Gradient =			_ mg per minute
Jun/2019/Paper_8 Aluminium is p	8464/1F/No.2.6 produced by ele	ectrolysis of a n	nolten mixture) .	
Complete the	sentence.				
	nswers from the				[2 marks]
				sulfate	water
The molten mi	xture contains			and	
aluminium					

7.	Jun/2019/Paper	8464/1H/No 5

This question is about electrolysis.

Some metals are extracted from molten compounds using electrolysis.

Why is electrolysis used to extract some metals?

[1 mark]

Aluminium is produced by electrolysis of a molten mixture.

What two substances does the molten mixture contain?

[2 marks]

1_____

2

Copper and chlorine are produced when molten copper chloride is electrolysed.

Complete the half equation for the reaction at each electrode.

[2 marks]

Half equation at negative electrode

 Cu^{2+} \longrightarrow \longrightarrow

Half equation at positive electrode

2 Cl⁻ → _____

Figure 4 shows the apparatus a student used to electrolyse copper chloride solution.

Power supply

Copper chloride solution

Pure copper electrode

The student:

- measured the mass of copper deposited on the negative electrode after 60 minutes
- · compared the mass deposited with the expected value.

Figure 5 shows the expected mass of copper produced each minute.

Determine the expected mass of copper after 24 hours.

Use Figure 5.

		[3 marks]
	Mass =	mg
	MIGOU	ing

Silver nitrate solution is electrolysed.

Figure 6 shows the change in mass of the negative electrode over 10 hours.

Figure 6

Determine the mass of the negative electrode at the start of the experiment.

Use Figure 6.

[1 mark]

Calculate the gradient of the line in Figure 6.

Give the unit.

[3 marks]

Gradient _____

Unit