
AQA - Changes of state and particle model - GCSE Physics

1. May/2020/Paper_1F/No.10

1 0 Figure 14 shows a hydroelectric power station.

Figure 14

Electricity is generated when water from the reservoir flows through the turbines.

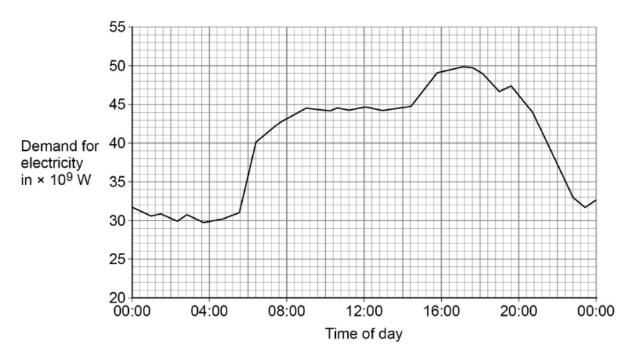
 $1 \ 0$. 1 Write down the equation which links density (ρ) , mass (m) and volume (V).

[1 mark]

1 0. 2 The reservoir stores 6 500 000 m³ of water.

The density of the water is 998 kg/m³.

solvedpapers.co.uk


Calculate the mass of water in the reservoir.

Give	your answer in standard form. [4	marks]
	Mass (in standard form) =	kg
1 0 . 3	Write down the equation which links energy transferred (E), power (P) and time [e (<i>t</i>). 1 mark]
1 0 . 4	The electrical generators can provide 1.5 \times 10 9 W of power for a maximum of 5	
	Calculate the maximum energy that can be transferred by the electrical genera [3	tors. marks]
	Energy transferred =	

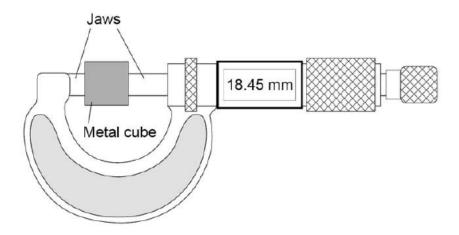
5

Figure 15 shows how the UK demand for electricity increases and decreases during one day.

Figure 15

The hydroelectric power station in Figure 14 can provide 1.5 × 109 W of power for a maximum of 5 hours.

Give two reasons why this hydroelectric power station is not able to meet the increase in demand shown between 04:00 and 16:00 in Figure 15.


	[2 marks]
1	
2	

2. May/2019/Paper_1H/No.9

0 9 A student measured the width of a solid metal cube using a digital micrometer.

Figure 11 shows the micrometer.

Figure 11

0 9 . 1 The resolution of the micrometer is 0.01 mm

The student could have used a metre rule to measure the width of the cube.

Explain how using a metre rule would have affected the accuracy of the student's measurement of width.

		[2 marks]		

solvedpapers.co.uk

0 9 . 2	The mass of the metal cube was measured using a top pan balance.			
	The balance had a zero error.			
	Explain how the zero error may be corrected after readings had been taken from the balance.			
	[2 ma	arks]		
0 9 . 3	The width of the cube was 18.45 mm. The density of the cube was 8.0×10^3 kg/n	n ³		
	Calculate the mass of the cube.			
	[5 ma	arks]		
	Mass =	_ kg		