AQA - Carbon compounds as fuel and feedstock - GCSE Chemistry

 May/2020/Paper_8462/2H/No. 	1. N	/lav/2	2020/	'Paper	8462	/2H	/No.:
--	------	--------	-------	--------	------	-----	-------

This question is about hydrocarbons.

Hexane and hexene are hydrocarbons containing six carbon atoms in each molecule.

Hexane is an alkane and hexene is an alkene.

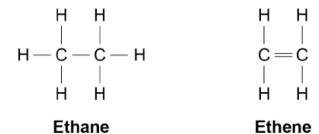
Draw **one** line from each hydrocarbon to the formula of that hydrocarbon.

[2 marks]

Hydrocarbon	Formula
	C ₆ H ₈
Hexane	C ₆ H ₁₀
	C ₆ H ₁₂
Hexene	C ₆ H ₁₄
	C ₆ H ₁₆

Bromine water is added to hexane and to hexene.

What would be observed when bromine water is added to hexane and to hexene?


[2 marks]

Hexane			
Hexene			

Ethane is an alkane and ethene is an alkene.

Figure 1 shows the displayed structural formulae of ethane and of ethene.

Figure 1

Compare ethane with ethene.

You should refer to:

- · their structure and bonding
- · their reactions.

[6 marks]

2. May/2020/Paper_8462/2H/No.7

This question is about carboxylic acids.

Carboxylic acids belong to a homologous series.

Table 3 shows information about the first three carboxylic acids in this homologous series.

Table 3

Name	Formula	pH of a 0.01 mol/dm³ solution
Methanoic acid		2.91
Ethanoic acid	CH₃COOH	3.39
	CH₃CH₂COOH	3.44

Complete Table 3.

[2 marks]

Ethanoic acid ionises in water.

The equation for the reaction is:

$$CH_3COOH(aq) \rightleftharpoons CH_3COO^-(aq) + H^+(aq)$$

Explain how the equation shows that ethanoic acid is a weak acid.

[2 marks]

A student adds a solution of ethanoic acid to zinc carbonate in an open flask on

a balance.
Explain what happens to the mass of the flask and its contents during the reaction. [3 marks]
The student compares the rates of the reaction of zinc carbonate with: • 0.01 mol/dm³ methanoic acid
0.01 mol/dm³ ethanoic acid.
The rate of the reaction with methanoic acid is greater than the rate of the reaction with ethanoic acid.
Explain why.
You should refer to ions in your answer.
Use Table 3. [3 marks]

Ethanoic acid reacts with ethanol to produce an ester.

Give the name of the ester produced when ethanoic acid reacts with ethanol.

[1 mark]

Hexanedioic acid and ethanediol join together to produce a polyester.

Ethanoic acid and ethanol join together in the same way to produce an ester.

Which is the displayed structural formula of the ester produced when ethanoic acid reacts with ethanol?

[1 mark]

Tick (\checkmark) one box.

	от о	
3.	May/2020/Paper_8462/2H/No.9.3 How many functional groups are there in the molecule in Figure 6 ?	[1 mark]
	Tick (✓) one box.	
	1 2 3 4	
4.	May/2020/Paper_8462/2H/No.9.4	
	Glycine reacts by condensation polymerisation to produce a polypeptide and other substance.	one
	Name the other substance produced.	[1 mark]

5. May/2019/Paper_8462/2F/No.5

Figure 3 shows a surfer on a surfboard.

Figure 3

Some surfboards are made from addition polymers.

Addition polymers are made from small alkene molecules.

Which type of bonding is present in small alkene molecules?

[1 mark]

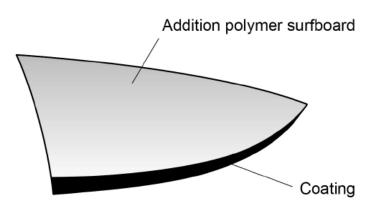
Tick (✓) one box.

Covalent

Ionic

Metallic

[1 mark]


Tick (✓) one box.

$$-c = c -$$

Figure 4 shows the structure of part of an addition polymer surfboard.

The outer surface of the surfboard is coated.

Figure 4

The coating is made from soda-lime glass fibres surrounded by a plastic.

What type of material is the coating of the surfboard?

[1 mark]

Tick (✓) one box.

Complete the sentence.

Choose answers from the box.

[2 marks]

air		ammonia	copper
	limestone	sand	I
The materials ເ	used to make the soda-	lime glass fibres are sod	ium carbonate,
		and	
Suggest two re	easons why surfboards	are coated.	[2 marks]
1			
2			

Some surfboards are made from wood.

Table 3 contains information about the materials in an addition polymer surfboard and a wooden surfboard.

Table 3

	Addition polymer surfboard	Wooden surfboard
Relative strength	14	38
Cost (£ per m³)	140	390
Density (kg/m³)	50	150
Disposal at end of life	Difficult to recycle	Can be used as fuel

Suggest two advantages and two disadvantages of using addition polymers rather than wood to make surfboards.

Use lable 3.	[4 marks]
Advantages of addition polymers	
Disadvantages of addition polymers	
Calculate the volume of wood in a wooden surfboard of mass 5.25 kg	
Use Table 3 and the equation:	
Density in kg/m ³ = $\frac{\text{Mass in kg}}{\text{Volume in m}^3}$	
Volume in m ³	[3 marks]
Volume =	m³

6. May/2019/Paper_8462/2F/No.8

This question is about crude oil and hydrocarbons.

Figure 6 shows a fractionating column used to separate crude oil into fractions.

Figure 6

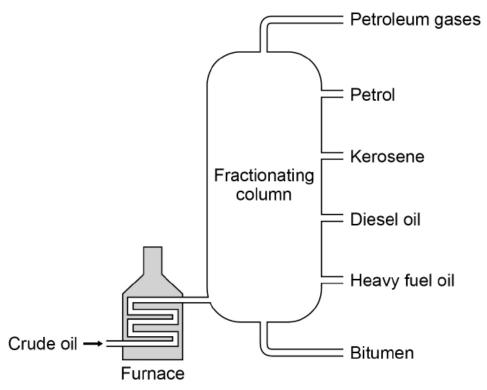


Table 5 gives information about some of the fractions.

Table 5

Fraction	Boiling point range in °C
Petroleum gases	Below 30
Petrol	40–110
Kerosene	180–260
Diesel oil	260–320
Heavy fuel oil	320–400
Bitumen	400–450

301/eapaper3.co.ak	
Suggest a suitable temperature for the furnace in Figure 6. [1 ma	ark
	°C
Explain why diesel oil collects above heavy fuel oil but below kerosene in the fractionating column.	
Use Table 5.	
[2 mai	ks
Suggest two reasons why bitumen is not used as a fuel.	
[2 mai	ks
1	

	solvedpapers.co.uk	
Petrol contains mainly	alkanes.	
Which of the following	compounds is an alkane?	mark1
Tick (✓) one box.	ι'	mark]
C_2H_4		
C_4H_8		
C_6H_{14}		
C ₈ H ₁₆		
Large hydrocarbon mo hydrocarbon molecules	lecules in the diesel oil fraction are cracked to produce si	maller
Describe the conditions needed to crack hydrocarbon molecules from the diesel oil		
fraction.	[2]	marks]

n are cracked to
[2 marks]
[1 mark]

7. May/2019/Paper_8462/2H/No.1

This question is about crude oil and hydrocarbons.

Figure 1 shows a fractionating column used to separate crude oil into fractions.

Figure 1

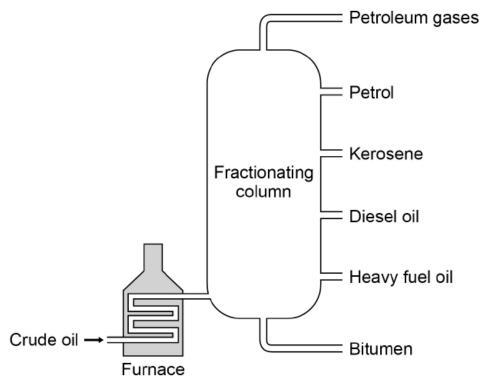


Table 1 gives information about some of the fractions.

Table 1

Fraction	Boiling point range in °C
Petroleum gases	Below 30
Petrol	40–110
Kerosene	180–260
Diesel oil	260–320
Heavy fuel oil	320–400
Bitumen	400–450

Suggest a suitable temperature for the furnace in Figure 1.	[1 mark]
	°C
Explain why diesel oil collects above heavy fuel oil but below kerosene in fractionating column.	the
Use Table 1.	[2 marks
Suggest two reasons why bitumen is not used as a fuel.	[2 marks
1	
2	

Petrol contains mainly alkanes.				
Which of the following compounds is an alkane?				
Tick (✓) one box.				
C_2H_4				
C_4H_8				
C ₆ H ₁₄				
C ₈ H ₁₆				
Large hydrocarbon molecules in the diesel oil fraction are cracked to produce smaller hydrocarbon molecules.				
Describe the conditions needed to crack hydrocarbon molecules from the diesel oil				
fraction. [2 marks]				

produce smaller hydrocarbon molecules.	іскеа то	
produce smaller flydrocarbott molecules.	[2 marks]	
Complete the equation for the cracking of C ₁₅ H ₃₂	[1 mark]	
C45H22 → C42H26 +	[