AQA - Atomic structure - GCSE Combined Science Physics

- 1. May/2020/Paper_1F/No.2
 - 0 2 Between 1951 and 1992 the USA tested nuclear weapons in a desert.
 - 0 2 . 1 Complete the sentence.

Choose the answer from the box.

[1 mark]

contamination irradiation	ionisation	decay
---------------------------	------------	-------

Radioactive dust from the nuclear weapons testing settled on the desert. This is called radioactive .

The desert now contains radioactive tritium.

Figure 3 shows how the activity of the tritium in a sample taken from the desert changed with time.

Figure 3

0 2.2	The sample was collected from the desert in 1992.	
	Determine the activity of the tritium in the sample in 2007.	[2 marks]
	Activity =	Bq
0 2.3	How much time did it take for the activity of the tritium in the sample to decrease from 80 Bq to 40 Bq?	
		[1 mark]
	Time =	years
0 2 . 4	What is the half-life of tritium?	[1 mark]
	Half-life =	years
	The count of the 45 hillian atoms of this was	
0 2 . 5	The sample started with 45 billion atoms of tritium.	
	After 4 years the sample had 36 billion atoms of tritium.	
	Calculate the percentage of the tritium in the sample that remained after 4	years. [2 marks]
	Percentage of tritium remaining =	%

0 2 . 6 A scientist determined the activity of a sample of tritium every minute for 3 minutes.

Table 1 shows the results.

Table 1

Time in minutes	Activity in Bq
0	149
1	151
2	148
3	152

	Why do the activity readings in Table 1 vary?	[1 mark]
	Tick (✓) one box.	
	Radioactive decay is a random process.	
	Temperature changes affect the radioactive decay.	
	The number of radioactive nuclei keeps increasing and decreasing.	
0 2.7	What safety precaution should scientists take when working with radioactive in a laboratory?	
	Tick (✓) one box.	[1 mark]
	Tie long hair back before handling the materials.	
	Use long tongs to handle the materials.	
	Wear safety goggles when handling the materials.	

0 2.8	Studies show that chil more likely to develop	dren born near the area of the desert containing tritium cancer.	were
	It is important that the	results from these studies are checked by other scientis	sts.
	What is this process of		[1 mark]
	Tick (\checkmark) one box.		
	Experiment review		
	Peer review		
	Results review		
	Test review		

- 2. May/2020/Paper_1H/No.2
 - 0 2

Different radioactive isotopes emit different types of nuclear radiation.

A polonium-210 (Po) nucleus emits an alpha particle (α) and turns into a lead (Pb) nucleus.

This can be represented by the equation:

$$^{210}_{84}Po \longrightarrow ^{A}_{Z}Pb + \alpha$$

What is the value of A in the equation? 0 2 . 1

[1 mark]

Tick (\checkmark) one box.

0 2 . 2 What is the value of Z in the equation?

[1 mark]

Tick (\checkmark) one box.

0 2 . 3	A strontium-89 nucleus (Sr) en yttrium nucleus (Y).	mits a beta particle (β)	and turns into an	
	This can be represented by the	e equation:		
		$^{89}_{38}$ Sr $\longrightarrow ^{A}_{Z}$ Y	+ β	
	What are the values of A and 2	Z in the equation?		[2 marks]
			A =	
			Z =	
0 2.4	Gamma radiation is another ty What does gamma radiation co Tick (✓) one box.		n.	[1 mark]
	High energy neutrons			
	Electromagnetic waves			
	Particles with no charge			
	Positively charged ions			

0	2	. 5	Explain the differences between the properties of alpha, beta and gamma radiations. [6 marks]

3.

	Answer =	rolls of the dice
	. 22 22 chen year mem ear year anomen	[3 marks
	You should show how you work out your answer.	
	Calculate the most likely number of times that the student had rolled the number of dice had halved.	ne dice before
	When the student had rolled the dice 20 times there were 9 dice left.	
	The student rolled the remaining dice and again removed all those that number six.	t landed on the
0 6.2	The student rolled 144 dice and removed all those that landed on the	number six.
		- '
0 6 . 1	Why is rolling dice a suitable model for radioactive decay?	[1 mark
	The removed dice represent nuclei that have decayed.	
	Dice that landed on the number six were removed from the tray.	
0 6	A student modelled radioactive decay by rolling some dice in a tray.	
May/2020/Pap	per 1H/No.6	

The number of times the dice have to be rolled to halve the original number of dice in the tray represents the half-life.

Figure 7 shows an eight-sided dice and a six-sided dice.

Explain how.

0 | 6 | 4

Figure 7

The student now used eight-sided dice to model radioactive decay. Dice that landed on the number six were again removed from the tray.

The half-life represented by rolling eight-sided dice is likely to be different from the half-life represented by rolling six-sided dice.

[2 marks]

·	
A teacher has two radioactive sources, A and B .	
Source A has a longer half-life than source B.	
What can be deduced about the nuclei in source ${\bf A}$ compared with the nuclei in source ${\bf B}$?	
Do not refer to isotopes in your answer.	[1 mark]
	[i iliai k]

4. May/2019/Paper_1F/No.4

0 4 Protactinium (Pa) is radioactive.

0 4 . 1 An atom of one isotope of protactinium contains 91 protons and 143 neutrons.

What is the correct symbol for this atom?

[1 mark]

Tick (✓) one box.

A teacher investigated how the count rate from a sample of protactinium changed over time.

Table 2 shows the results.

Table 2

Time in seconds	Count rate in counts per second
0	200
50	122
100	74
150	45
200	27

Figure 6 shows some of the teacher's results.

0 4 . 2 Complete the graph in Figure 6.

Use data from Table 2.

Draw the line of best fit.

[2 marks]

How much time did it take for the count rate to change from 200 counts per second to 100 counts per second?

[1 mark]

Time taken = s

0 4 . 4 What is the half-life of protactinium?

[1 mark]

Half-life =

0 4 . 5	The nuclear radiation from the protactinium can pass through paper.		
	This radiation can only be detected up to 1 metre away from the protactinium		
	What type of radiation is emitted by the protactinium?	[4 mark]	
	Tick (✓) one box.	[1 mark]	
	Alpha		
	Beta		
	Gamma		
	Neutron		
0 4.6	The teacher read an article about the effects of radiation on the human body.		
	Why are articles in scientific journals generally more trustworthy than articles in newspapers?		
		[1 mark]	

5 .	May/2019/Pa	per_1H/No.6			
	0 6	Lanthanum-140 is a radioa	ctive isotope.		
	0 6.1	A nucleus of lanthanum-14	0 emits gamma radiation.		
		What happens to the mass gamma radiation is emitted		the nucleus when	[1 mark]
		Tick (✓) one box.			[Timark]
		Mass number	Charge		
		Decreases	Decreases		
		Decreases	Stays the same		
		Stays the same	Decreases		
		Stays the same	Stays the same		
	0 6.2	Why is it difficult to detect of	gamma radiation?		[1 mark]

	solvedpapers.co.uk
0 6 . 3	Activity is the rate at which a radioactive source decays.
	A teacher measured the count-rate from a sample of lanthanum-140 using a Geiger-Muller (G-M) tube.
	Explain why the count rate was less than the activity of the sample of lanthanum-140 [2 marks]
	The teacher investigated how the thickness of lead affected the amount of gamma radiation that could pass through it.
	Figure 6 shows the apparatus.
	Figure 6
	Sample of lanthanum-140 Lead G-M tube To counting machine

Table 1 shows the results.

Table 1

Thickness of lead in cm	Count rate in counts per second
0.5	110
1.0	60
1.5	33
2.0	18
2.5	10

0	6	. 5	The teacher concluded that the count rate was not inversely proportional to the
			thickness of lead.

Explain why the teacher was correct.

Use the	data	in	Table	1.

[3	marks]
Ľ	illa illo

0 6.6	Lanthanum-140 can also emit beta radiation and change into cerium.

Complete the equation showing the decay of lanthanum (La) 140 into cerium (Ce). [2 marks]

There are other isotopes of cerium which are radioactive.

Different isotopes of cerium have different half-lives.

The half-life of an isotope can be found by studying how the number of atoms changes over time.

Figure 7 shows how the number of atoms of cerium-148 in a 120 g sample changes over time.

Figure 7

0 0 . 7	100 seconds old compared with when the sample was 350 seconds old.	
	Use data from Figure 7.	marks]
	Patio =	
	Ratio =	
0 6 . 8	Determine the activity of the sample of cerium when the sample was 20 secon	ds old.
	Use Figure 7.	marks]
	Activity =	Bq

- 6. May/2020/Paper_1F/No.6
 - 0 6

Different radioactive isotopes emit different types of nuclear radiation.

A polonium-210 (Po) nucleus emits an alpha particle (α) and turns into a lead (Pb) nucleus.

This can be represented by the equation:

$$^{210}_{84}$$
Po $\longrightarrow ^{A}_{Z}$ Pb + α

0 6 . 1 What is the value of A in the equation?

[1 mark]

Tick (✓) one box.

0 6.2 What is the value of Z in the equation?

[1 mark]

Tick (✓) one box.

A strontium-89 nucleus (Sr) emits a beta particle (β) and turns into an 0 6 3 yttrium nucleus (Y). This can be represented by the equation: $^{89}_{38}$ Sr \longrightarrow $^{A}_{Z}$ Y + β What are the values of A and Z in the equation? [2 marks] A = ____ Z = Gamma radiation is another type of nuclear radiation. 0 6 What does gamma radiation consist of? [1 mark] Tick (✓) one box. High energy neutrons Electromagnetic waves Particles with no charge Positively charged ions

0 6 . 5	Explain the differences between the properties of alpha, beta and gamma radiations. [6 marks]

7.

May/2019/Pap	per_1F/No.3
0 3	In an experiment, a beam of alpha particles was directed at a thin sheet of gold foil.
0 3.1	Most of the alpha particles passed straight through the gold foil.
	Alpha particles which passed close to the nucleus of a gold atom did not pass straight through.
	What happened to the alpha particles which passed close to the nucleus of a gold atom?
	[1 mark
0 3.2	The results suggested that the diameter of the nucleus of a gold atom is $\frac{1}{6000}$ of the diameter of the atom.
	The diameter of a gold atom is 0.18 nm
	Calculate the diameter of a gold nucleus in nm [2 marks
	Diameter = nm

0 3 . 3 Further experiments showed that gold nuclei are surrounded by electrons in different energy levels.

Figure 4 shows three of the energy levels around the nucleus of a gold atom.

The electron in energy level **B** absorbs electromagnetic radiation.

Which energy level will the electron be in after it has absorbed the electromagnetic radiation?

[1 mark]

Tick (\checkmark) one box.

A B C