AQA - Algebra – GCSE Mathematics Paper 2

1. May/2020/Paper_2F/No.3

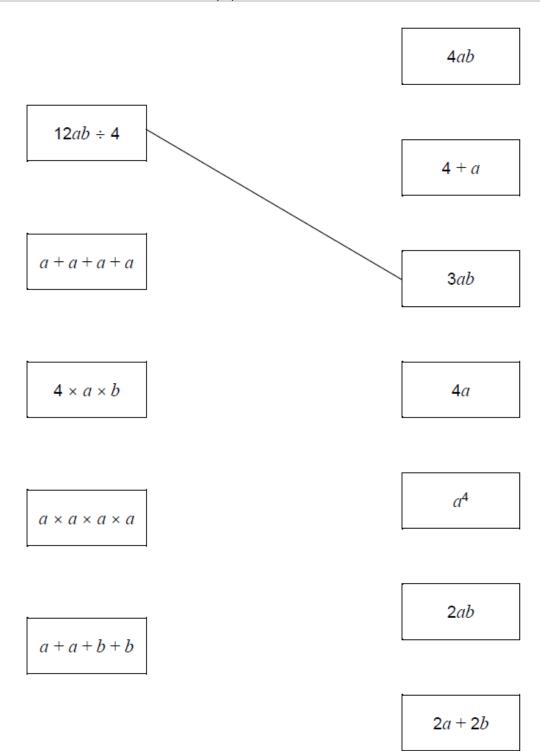
Circle the expression that has the **smallest** value when x = 4

[1 mark]

$$5-x$$

$$\frac{1}{2}x$$

$$x + 1$$


$$x-4$$

2. May/2020/Paper_2F/No.12

Match each expression on the left with one on the right.

One has been done for you.

[4 marks]

3.	N /	/2020	/Paper_	25	/NI= 20
ა.	iviav	/ ZUZU	/Paper	2 F	/INO.ZU

(a) a and b are whole numbers.

$$a \le 12$$
 $b < 9$

Work out the **largest** possible value of 2a + b

[2 marks]

Answer _____

(b) x and y are both **negative** numbers.

Show that $\frac{y}{x}$ could equal 4

[1 mark]

May/2020/Paper_2H/No.1 4.

Which of these is a correct identity?

Circle your answer.

[1 mark]

$$x + 4x = 5x$$
 $6x = 18$ $2x + 1 = 7$ $7x + 9 = x$

$$6x \equiv 18$$

$$2x + 1 \equiv 7$$

$$7x + 9 \equiv x$$

May/2020/Paper_2H/No.4

Circle the expression that has the **largest** value when a < -1

[1 mark]

$$\frac{1}{2}a$$

$$a^2$$

 a^3

6. May/2020/Paper_2H/No.15

Rearrange $a = \frac{b}{c} + 5$ to make c the subject.

[3 marks]

Answer

7. May/2020/Paper_2H/No.19

a and b are positive values.

Show that $\frac{7a + 2b - 3a}{8a + 6b + 2a - b}$

always simplifies to the same value.

[3 marks]

8.	May	/2020/	'Paper_	2H/N	o.25
••		,		,	

Factorise $3x^2 + 11x - 20$

[2 marks]

Answer _____

9. June/2019/Paper_2F/No.15

A line has the equation y = x + 3

(a) Write down the coordinates of the point where the line intersects the y-axis.

[1 mark]

Answer (_____, ____)

(b) Write down the coordinates of the point where the line intersects the x-axis.

[1 mark]

Answer (_____, ____)

10. June/2019/Paper_2H/No.20

Expressions for consecutive triangular numbers are

$$\frac{n(n+1)}{2} \quad \text{and} \quad \frac{(n+1)(n+2)}{2}$$

Prove that the sum of two consecutive triangular numbers is always a square r	number.
	[4 marks]

11. June/2019/Paper_2H/No.26

$$(x + 5)(x + 2)(x + a) \equiv x^3 + bx^2 + cx - 30$$

Work out the values of the integers a, b and c.

[3 marks]

12. June/2019/Paper_2H/No.27

$$f(x) = \frac{2x}{5} - 1$$

Work out the value of f⁻¹(3) + f(-0.5)

[5 marks]

13. Nov/2019/Paper_2F/No.1

Simplify 8a - 3a + a

Circle your answer.

[1 mark]

4*a*

6*a*

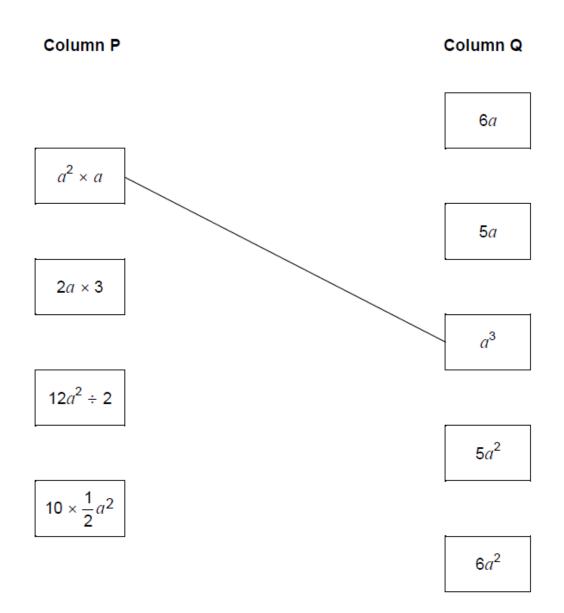
5 + a

 $8a - 3a^2$

14. Nov/2019/Paper_2F/No.7(c)

(c) Simplify fully $\frac{9m}{12m}$

[2 marks]


Answer _____

15. Nov/2019/Paper_2F/No.17

Match each expression in Column P with the equivalent expression in Column Q.

One has been done for you.

[3 marks]

16.	Nov/2019/Paper	2F/No.21

a and b are both prime numbers.

They are each less than 20

Give an example where a+b is odd but **not** prime.

[2 marks]

17. Nov/2019/Paper_2F/No.27

Here is an identity.

$$a(3x - 10) \equiv 21x + 2b$$

Work out the values of a and b.

[3 marks]

18. Nov/2019/Paper_2H/No.1

Expand
$$4x^{2}(3x + 5)$$

Circle your answer.

[1 mark]

$$32x^{3}$$

$$12x^3 + 20x^2$$
 $7x^3 + 9x^2$ $12x^2 + 5$

$$7x^3 + 9x^2$$

$$12x^2 + 5$$

19. Nov/2019/Paper_2H/No.15

Rearrange $y = \sqrt{w^3}$ to make w the subject.

Circle your answer.

[1 mark]

$$w = y^6$$

$$w = \sqrt[3]{y^2} \qquad \qquad w = \sqrt{y^3}$$

$$w = \sqrt{y^3}$$

$$w = y^5$$

20. Nov/2019/Paper_2H/No.16

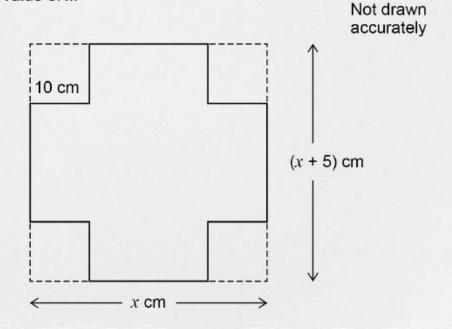
Show that a% of b = b% of a(a)

F4	MA A P. 1
	marki
	HIGHN

b)	Rosie says,	
	"160% of 40 = 140% of 60 because $a\%$ of $b=b\%$ of a "	
	Is she correct?	
	Tick a box.	
	Yes No	
	Give a reason for your answer.	[1 mark]

21. Nov/2019/Paper_2H/No.18

Kate has the following question for homework.


The net of a box is made by cutting four squares from a piece of cardboard.

The cardboard is a rectangle with width x cm and length (x + 5) cm

Each square has side length 10 cm

The area of the net is 1000 cm²

Work out the value of x.

	at Kate can form the equ	adion	x + 0x 1400 0	[3 m
Kate cor	rectly factorises the equ	ation to ge	(x + 40)(x - 35) =	÷ 0
	rectly factorises the equiver to the homework qu			- 0
Her ans				- 0
Her ans	ver to the homework queswer correct?			÷ 0
Her ans	ver to the homework queswer correct?	estion is x		= 0

22 . Nov	/2019	/Paper	2H	/No.21
-----------------	-------	--------	----	--------

 \boldsymbol{n} is the middle integer of three consecutive positive integers.

The three integers are multiplied to give a product.

n is then added to the product.

Prove that the result is a cube number.	[4 marks]

23	Nov	/2019	/Paper	2Н	/No 27
Z J.	INOV	/ 2015	/rapei	ΔΠ,	/ INU.Z /

$$x_{n+1} = \sqrt[3]{3x_n + 7}$$

Use a starting value of $x_1 = 2$ to work out a solution to $x = \sqrt[3]{3x + 7}$ Give your answer to 3 decimal places.

 [3 marks]

Answer